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Abstract

Models of forest ecosystems are needed to understand how climate and
land-use change can impact biodiversity. In this paper we describe an eco-
logical dispersal model developed for the specific case of predicting seed
dispersal by trees on a landscape for use in a forest simulation model. Unfor-
tunately, performing realistic forest simulations of such models has proven to
be computationally infeasible. We present efficient algorithms for comput-
ing seed dispersal. These algorithms allow us to simulate large landscapes
for long periods of time.
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1 Introduction

1.1 Motivation

Ecologists have long been interested in how organisms move about their environ-
ment. While the movement of motile animals is quite conspicuous, the dispersal
of sessile organisms, such as by seed in vascular plants, is no less important eco-
logically. Recent ecological theory has highlighted the potential importance of
dispersal in a number of contexts, such as maintaining biodiversity and predicting
how species will respond to climate change and habitat fragmentation. However,
predicting dispersal can be challenging. On one hand, dispersal is often a very
stochastic process, with a high degree of spatial and temporal variability. On the
other, dispersal is often dominated by spatially small-scale interactions but can be
very sensitive to rare long-distance dispersal events (citation). In addition, pre-
dicting dispersal can be computationally challenging. Consider the common case
where you need to produce a map of where organisms are dispersing to. This in-
volves calculating the contribution by every reproductive individual on a landscape
to seed rain at the every location on the landscape in all pair-wise combinations.

In this paper we will present an ecological dispersal model developed for the
specific case of predicting seed dispersal by trees on a landscape for use in a forest
simulation model (citation-SCG paper). However, it is important to keep in mind
that the principles developed here remain general to many dispersal problems faced
by ecologists.

An increased recognition of the impacts of dispersal on ecological processes
has occured as ecologists have shifted from early mean-field population models to
more complicated spatial models. The use of spatial models in ecology has in-
creased rapidly as we have come to recognize a number of ways in which spatial
heterogeneity, both intrinsic in the landscape and generated by ecological dynam-
ics, can strongly affect ecological dynamics [3].

Spatial and temporal variability in dispersal arises from a number of different
sources. Considering the case of seed dispersal by trees, one must consider the den-
sities of different species of tree, the heterogeneous arrangement of trees within a
species, the variability among trees in seed production, and the stochastic nature of
the dispersal process itself. Spatial and temporal variability in seed dispersal can
have a number of interesting ecological consequences. For example, some species
may buffer themselves against variability, referred to as the ”storage effect” (Ches-
son cite), while other species may exploit transient climatic conditions conducive
to establishment or rare dispersal to good habits. Through periodic variation in
dispersal, a phenomenon known as masting in trees, it is though that trees can tem-
porarily satiate their predators, resulting in greater survival than would occur from
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constant seed production.
Seed dispersal is critical for the generation of ecological pattern. Dispersal is

the only means by which trees are able to move on the landscape, however most
seed drops very close to the parent tree [11, 4] and thus tends to promote spatial
aggregation. However, the small fraction that disperses long distance is essential
for species migration in the face of global change [5] (Clark et al 2001b, 1998).
In addition, recent theory [9, 10] (Hasting 1980, Tilman 1994, Hurtt and Pacala
1995) suggests that species composition may be determined largely by a trade-off
between long-distance dispersal ability and competitive ability.

To be useful to scientists and managers, forest models must be sufficiently de-
tailed to capture processes that affect the establishment of trees and yet sufficiently
broad to admit landscape and atmospheric processes. This is particularly true for
dispersal, where we believe that the fine scale temporal and spatial variability in
seed rain is important to understanding key ecological processes like the mainte-
nance of biodiversity and migration. However, the important effects of dispersal
that we want to predict unfold over large spatial scales and over a long time.

Related work Within the context of forest models, concern about dispersal abil-
ity and seed availability is a relatively recent phenomenon. Early forest models
assumed that there was a constant influx of seed of each species irregardless of
what species are actually present in a stand or the surrounding area (CITE). In this
way species never became locally extinct in a model because there was always new
seedlings even if there were no adults to produce them. Later models accounted for
the fact that the amount and species of seed arriving in a stand was dependent upon
the reproductive adult trees present, but did so ignoring their spatial arrangement
or dispersal ability. Clearly, neither type of model is suitable to answer questions
about the effects of spatial or temporal heterogenity in dispersal, the impact of
long-distance dispersal, or the ability of forests to shift spatially in response to cli-
mate change or anthropogenic disturbance. The SORTIE forest model (Pacala et
al 1993, 1996, Rees?) was the first forest model to include dispersal explicitly.
The algorithm used by the SORTIE model involves drawing for each propagule
a dispersal distance and direction from a statistical distribution. If there are �
individuals each producing an average of � propagules, this requires ��������� calcu-
lations. If the number of propagules is small then this approach can be much faster
than the alternative of computing the pair-wise interactions between � individuals
to all locations on a landscape of area 	 , which requires �
����	�� calculations. The
SORTIE model keeps � small by looking at the “dispersal” of established saplings,
for which there are only a few per tree, rather than the total available seed, which
can be many orders of magnitude greater.
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Outside the context of forest models, most theoretical models treat dispersal as
a global process, a lattice “neighboor” process, or consider all pair-wise dispersal
events between a small number of “patches”. In global dispersal models, propag-
ules all enter a common pool which is then distributed amoung all locations in the
model (e.g. Tilman 1994). In lattice models and cellular automata, dispersal is usu-
ally treated as just occurring between a cell and it’s local neighboorhood, which is
usually defined as the 4 or 8 adjacent cells on a square lattice or the 6 adjacent cells
on a hex lattice e.g. (Tilman 1997?). In patch and metapopulation models, either
all pair-wise dispersal events are considered, but the number of patches is generally
small and doesn’t present a computational challenge, or dispersal is assumed to be
global (e.g Hanski ). All of this is not to say that dispersal is simpler outside of
forest models, but rather than dispersal can be just as complicated but is still treated
in a very simplified manner in other ecological models.

Our approach. The dispersal process is computationally intensive – it requires
quadratic number of calculations. Moreover, our forest model allows for many
sources of variability and uncertainty that characterize forest processes and param-
eter data. For example, inherent stochasticity in dispersal calculation is quite high
and can be quantified. This means that we can approximate the dispersal calcu-
lations, wherein the accuracy of the calculation is fixed based on the quantified
stochasticity. Detailed description of statistical computation is presented in Clark
et al. [6, 7]. In general, knowledge of uncertainty and error associated with param-
eterization guides the development of efficient algorithms.

We exploit spatial coherence to design efficient algorithms for dispersal cal-
culations. We use a hierarchical data structure to represent the forest at various
spatial scales. Using the multi-resolution nature of the quad tree [8, 12], we make
spatial approximations, depending on the required accuracy. To compute dispersal,
we use the Monopole approximation [1] to aggregate seed dispersal from distant
trees. This yields an efficiency-accuracy tradeoff scheme to compute dispersal.

Our results. We have developed efficient approximation algorithms for com-
puting dispersal. For reasonable error, our approximation algorithm acheives a
speedup of an order of magnitude. We have performed a series of experiments
to quantify the inherent variability in the dispersal process. We have also per-
formed a series of experiemnts to evaluate the dependence of approximation error
and running time on approximation parameter, species parameters, number and
distribution of trees in the forest. Based on these experiments, we determine the
appropriate approximation for our forest simulations.
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Figure 1: Landscape 	 and the underlying mesh 
 .

2 Overview of Our Model

We first give a brief overview of our forest model. The forest consists of a land-
scape 	 and a population of trees, which is modeled as family of densities and a
family of individuals. The landscape remains fixed over time but the population
evolves with time.

Landscape. Our model considers the landscape 	 of the forest as a planar region
whose boundary is a closed polygonal curve. The area of the landscape varies from
a few hectares to few hundreds of hectares. We discretize 	 by enclosing it with
a square and laying a uniform grid(mesh) 
 on it. Each grid cell 
 ��� of 
 is a
square of size � ; we refer to � as the resolution of 
 . We use  ��� to denote the
center of 
 ��� , and we associate an elavation (height) � ��� with  ��� . By interpolating
the heights at other points 	 , we can view 	 as a terrain. We could also associate
various geological and urban features such as rivers, lakes, roads, etc. with 	 .
Figure 1 shows an example of a landscape alongwith the underlying mesh.

Population. Our model is hybrid in the sense that we use both densities and
individuals to model the population of the forest. The early stages of trees are
modelled as densities, and after some growth, they are modelled as individulas
with unique physical attributes. More precisely, we classify the population into
five stages: seed, yearling, seedling, sapling and adult (Figure 2). We further refine
seeds into seed rains and seed banks - the former representing the seeds that are
dispersed by trees and the latter representing the ones that are on the ground. The
seeds that have germinated are called yearlings. We model seed rain, seed bank
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Figure 2: Evolution of densities of stages seed and yearling and growth of an indi-
vidual from a seedling to an adult.
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Figure 3: Geometric model of an individual.

and yearling as densities, as they do not have any geometric attributes and all of
them with the same species are identical. We assume that the density is uniform
within each grid cell.

We model the next three stages — seedling, sapling, adult — as families of
individuals. Each individual � has a physical location � ��� ������� and various
physical attributes. Currently, we model each individual as a cylindrical trunk and
a cylindrical crown sitting on top of the trunk; see Figure 3. Let � ��� ����� ��� �
(resp. ��� ��� ������� ��� � ) denote the diameter and height of the trunk (resp. crown)
of � .

We have two threshold parameters � � and �"! . An individual � is a seedling if
� ��� �$#%�&� , a sapling if �'�(#%� ��� �$#%�"! , and an adult if � ��� �)(�&! .
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Dynamics. The dynamics of our forest model consists of three parts - establish-
ment of individuals, its growth and its mortality. Individuals are established by
dispersal of seeds. The adult trees produce seeds depending on its DBH(diameter
at breast height) and these seeds are dispersed based on a dispersal kernel. The
dispersal kernel accounts for both short and long distance dispersal. Growth of
each of the stages is calculated based on resource availability and local density.
Individuals are promoted from one stage to next based on the growth thresholds.
Mortality of individuals is done by calculating a mortality probability based on the
growth suppression and natural disturbances.

Resources. The forest contains several resources like light, moisture, nitrogen,
etc which are vital for the growth of the individuals in the forest. We model each
resource as a separate submodel. Light is considered as one of the main resources
in our model. We develop a sophisticated light model based on Casetti’s [2] light
model to calculate the availability of understory light at each gridcell.

3 Dispersal Model

The dispersal model determines the number of seeds that disperse into each grid-
cell of 
 . This quantity depends on:

� the number of seeds produced by each tree, denoted as fecundity

� spatial distribution of seeds, which is defined by the dispersal kernel.

Fecundity. The fecundity,
��� ��� � , of an individual � at time � is based on the

idea of decomposing the variability in reproductive output appropriately between
species-level effects and individual-level effects that are constant, temporally vary-
ing, and size-dependent. It is calculated as follows:

��� ��� �	��
 ��� ���� ��� ������������������ �!��"$#%��� �&� � � � ��� � ����' (1)

where


 ��� �	�
( � if )+*�,�).-/)+,�021�34�5)+687!9;:<1�3.9 �� if )+*�,�).-/)+,�021�34�5)+6:=1�3.9�>

� ��� �	�
( � if � � ��� �@?BA ��� � ,� if � � ��� �#BA ��� �C>

A ��� �EDGF �IHKJ �LHNM �
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Figure 4: Dispersal kernel for parameters of species Acer rubrum p=1;
u=101.3(steep curve) and species Liriodendron tulipifera p=1; u=719.8.

where � J and �2M are species-specific scaling parameters,
� ��� � is an individual-

specific scaling parameter, � � ��� � is the diameter of the trunk of individual � at
time � , F �IHKJ �LHNM � is a Gamma distribution with species-specific maturity parame-
ters H J �LH M and � � ��� � is a temporally autocorrelated Gaussian stochastic process,
defined as:

� � ��� �	D�� ��� ��� �	� M ��� ����
 � � (2)

where � and 
 are species-specific parameters.

The dispersal kernel describes the spatial distribution of the scattering of seeds
in the vicinity of the parent plant, as a function of distance � . We use a bivariate
Student’s t-distribution for the dispersal kernel, which has the following form: ������� � ��� � �� � � ������������ � M �
where � and � are species specific parameters. Figure 4 shows the graph of the
dispersal kernel for the parameters of two species: Acer rubrum and Liriodendron
tulipifera (Clark et al. [7]).

The actual number of seeds dispersed into the grid cell 
 ��� , dnoted as � ��� � is
drawn from a Poisson distribution

� ��� � D� �	! � �  ��� �8� � � ���
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where � is the side length of a gridcell 
 ��� and ! � ����� is the expected seed density
in location � at time � ,

! � ����� � �

�
� � ��� ��  �������	� ��� �
� ��� � ���C>

where the sum is taken over all the trees in the forest.

The functional form of the dispersal kernel was chosen from a number of po-
tential functions using formal statistical techniques for model comparison (Clark et
al [4]). Model parameterization is based on extensive field data (Clark et al. [7]).

4 Computing Dispersal

We developed a forest simulator based on relationships outlined in Section 2. Sub-
models include dispersal, light, germination, mortality, disturbance, and climate.
The simulator takes as input an initial configuration of the forest and landscape. It
simulates dynamics at annual time steps. Figure 5 shows the flowchart of opera-
tions.

No

Yes

Update

Initialize
  Forest

Build
  QuadTree

Calculate
  Light   Germination   Growth   Mortality   Output

  QuadTree

  Terminate  Dispersal

Figure 5: Flow chart of the sequence of operations performed by the simulator

Dispersal and light calculations are computationally intensive. Moreover eco-
logical experiments require large landscapes (at least 1 sq. km.) and up to several
thousand years. Using exact calculations, these simulations would take months.
Our algorithms included a quad-tree like data structure that is hierarchical. Using
the multi-resolution quad tree, we calculate dispersal using approximations at spa-
tial resolutions that depend on the required accuracy. We describe the quad tree
data structure below:

Quad tree data structure. We developed a 2D quad tree � on the coordinates
of all the individuals(adults, saplings) in the forest. Let � denote the set of points
representing the locations of the trees. All spatial processes (esp. dispersal) operate
between and not within cells. Thus, we stop the recursion on the quad-tree when
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Figure 6: Monopole approximation for dispersal. Trees, represented by crosses,
disperse seed to destination � .

the granularity of the region reaches the size of a grid-cell. This property of our
model allows us to obtain a bound on the depth of � . In a general setting, the depth
of the quad-tree depends on the distance of the closest pair of points in � , because
recursion continues until we separate the closest pair.

For any node � in � , let
���

denote the region represented by � and � � represent
the set of all the trees contained in

���
. In each interior node of the quad-tree � , we

store summary statistics for trees contained in the node. The summaries consist of
number, total fecundity, basal area, etc. of trees �� � � . These summaries are used
to develop approximation schemes for dispersal calculations.

Exact calculation of dispersal requires ������	 � time, because each grid-cell re-
ceives seeds from � trees. However, when trees are far away from the destination
grid cell, their individual distances from � are roughly the same(Figure 6). There-
fore, we can replace the trees by a single large tree (represented by shaded circle)
of appropriate fecundity to obtain an approximate solution.

Approximation scheme. We formally describe the algorithm as follows: Let �
be the side-length of square 	 and 
 be the distance of 	 from � , as shown in
Figure 6. We can perform the monopole approximation if ���
���� , where � is the
monopole coefficient. The approximation algorithm is a top-down traversal of the
quad-tree starting at the root. The procedure at any node � is shown in Figure 1.

The quad-tree provides a multi-resolution mechanism to monopole approxi-
mate regions of varying dimensions depending on distance from � . Moreover,
since the total fecundity of trees in � � is stored at � , the monopole approximation
can be computed in constant time.

We now analyze the running time of our algorithm. Let  be a circle of radius����� , centered at the grid-cell � and let ��� is the number of trees that lie inside
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Algorithm 1 Monopole Approximation(node � , cell � )� � side-length of square
� �


 � distance between
���

and �
if �����
 #�� � then

replace trees in � � by a tree � of appropriate fecundity
calculate dispersal in � due to tree �

else
for each child � of � do
Monopole Approximation � � � � �

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

������������������������������

������������������������������
�

Figure 7: Concentric circles  J �  M&�  � around gridcell �

circle  . The dispersal due to all plants in  is calculated by going over each tree
individually. This is because 
 � ����� and thus ���
 ? � . The complexity of the
dispersal calculation is ��� � � � .

Let  � �;� #
	 # 3��� 	 be an annular ring, centered at the center of � and
having inner radius � � ��� and outer radius � � � M ��� . Figure 7 shows concentric
rings  �  J �  M&�  � The monopole condition is satisfied for all quad-tree regions� �

with side length � � , that are contained in  � . Using a packing argument, the
number of such regions

� �
is at most � ��� � .

For any gridcell � , the forest with 	 gridcells is covered by atmost 3��� 	
annular rings  � . The number of monopole approximations performed in any such
 � is � ��� � . Thus the total complexity of the Monopole procedure is �
�$3��� 	 ��� � � .
Thus the total cost is �
�$3��� 	���� � � � � �

Performing the Monopole procedure for each gridcell � , the time to compute
dispersal for the entire forest is ��� 	 3��� 	 ��� � � � � . Note that � � � � denotes
the total number of dispersal calculations done without monopole approximation.
Dispersal is calculated for each tree in the forest located in grid cell � for all grid
cells that are distance ����� . Thus each tree contributes to ����� � dispersal calcula-
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tions. The total number of individual dispersal calculations is thus � ��� � . The total
time to calculate dispersal is thus �
� � 	 3��� 	 � � � ��� � � .
Experimental results. We have performed a set of experiments to evaluate the
computational performance of the approximation algorithm as a function of the
area of the forest and the monopole error threshold. All our experiments are per-
formed on a 2.2 GHz Intel PC with 4 GB memory, nVidia Quadro4 XGL 900
graphic card running Linux OS.
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Figure 8: Running time of dispersal algorithm with monopole 0.1 for varying forest
area sizes

We performed experiments on a forest initialized with the output of a 100 year
simulation involving a single species. In our experiment, we varied the side length
of the forest from 32 meters to 1024 meters. Figure 8 compares the running time
of the exact algorithm with the monopole algorithm (for monopole threshold 0.1).
The exact algorithm is the monopole algorithm with monopole factor set to 0. For
a ��� � ��� ��� � � sq. m forest, the monopole acheievs speedup of two orders of mag-
nitude. Figure 9 plots the RMS error of seeds dispersed for monopole factor 0.1.
Note that the error in seeds dispersed is less than ��� for the landscapes simulated.

Finally, we performed an experiemnt to evaluate the effect of monopole factor( � )
on the error incurred. We initialized the forest with trees of species Acer ru-
bium from Duke forest site. Figure 10 plots the RMS error of seeds dispersed
for monopole factors from 0 to 100. The RMS error increases rapidly for � # �
and does not change for � ) �4� . The shape of the dispersal kernel for Acer ru-
bium(see figure 4) explains this behaviour. Since the dispersal kernel is almost a
constant after a 20 meter radius, any amount of monopole approximation involving
distances above 20 meters does not affect the RMS error.
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Figure 9: Relative error of dispersal algorithm with monopole 0.1 for varying forest
area sizes
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Figure 10: Relative error of dispersal algorithm for varying monopole factor. The
forest is initialized with trees of species Acer rubium from Duke forest site.
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Species 
 � � � � � �8J �EM ��� �
�

ACru 1.18 0.036 0.024 62 2.77 0.406 1.15 0.05
CAca 1.36 -0.025 0.020 50.5 1.53 0.923 16.11 2.12
CEca 0.37 0.272 0.040 163.9 1.62 0.757 2.84 0.7
FRam 1.70 0.105 0.015 34.7 2.28 0.425 3.10 0.14
LIst 0.57 -0.790 0.001 518 2.31 0.527 5.30 0.15
Litu 0.55 0.371 0.005 719.8 3.37 0.577 3.09 0.12

NYsy 1.16 -0.001 0.434 27.7 0.60 0.329 3.07 0.06
PIta 0.72 -0.349 0.145 1706.1 2.06 0.700 1.65 0.03

ULsp 0.31 0.189 0.315 391.2 2.27 0.888 6.25 0.42

Table 1: Species dispersal parameters derived from field experiments (Clark et al
2004)

5 Inherent variability

To test the ecological behavior of the dispersal model, we ran the simulation on the
map of a real forest using the parameters derived empirically. The forest stand is
located in the Blackwood Division of the Duke Forest in Chapel Hill, NC. Over
an area covering 4 ha every tree over 2m tall was identified to species, mapped,
and its diameter was measured at 1.45m high, a common metric in forestry and
ecology referred to as Diameter Breast Height (DBH). In total there were 52 species
observed in this stand, but for this experiment we will focus on nine species: Acer
rubrum (ACru), Carpinus caroliniana (CAca), Cercis canadensis (CEca), Fraxinus
americana (FRam), Liquidambar styraciflua (LIst), Liriodendron tulipifera (LItu),
Nyssa sylvatica (NYsy), Pinus taeda (PIta), Ulmus species (ULsp). In the case
of Ulmus, we have chosen to lump three species (Ulmus alata, Ulmus americana,
Ulmus rubrum) which are ecologically very similar.

We focussed our experiment on species for which we have good parameter esti-
mates and which show a number of contrasting ecological patterns. The criteria of
having good parameter estimates results in common species being overrepresented
in this sample. Table 1 lists the parameter values used for each of these species.

Dispersal calculations were conducted 1000 times for each species, using the
same tree map in all cases, and allowing for temporal autocorrelation as defined in
equation 1. Simulations were run on a 512x512m landscape at a 1x1m resolution
with a monopole threshold of 0.125 and with the mapped forest approximately cen-
tered in the landscape. From the 1000 replicate dispersal maps, we calculated the
mean and variance of seed rain for each species at each grid cell. ArcGIS (ESRI
citation) was then used to visualize the data(Figure 13), generate a coefficient of
variation map for each species(Figure 14), and to sample the mean and CV maps
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at 124 known points Figures 11 and 12). These sample points, which coincide
with the seed rain sampling points used in field studies, were then used to compare
dispersal ability among species and estimate what an acceptable level of approxi-
mation error is for the dispersal algorithm. The mean dispersal maps illustrate the
spatial variability in seed rain and it’s relation to parent trees, which are depicted
as circles with diameter equal to their mean canopy diameter (Figure 13). The CV
maps illustrate the spatial pattern of the temporal variability in seed rain (Figure 14.

Figure 11: Plot of coefficient of variation against mean seed rain for 9 different
species at 124 sample points in the Duke foest site.

There are a number of factors that control the spatial and temporal patterns
of seed rain for each species: the abundance of parent trees, the spatial arrange-
ment of the trees, the fecundity of the trees ( � J , � M , � � , � � ), the variability in fe-
cundity ( 
 , � , � ), the dispersal ability of seed ( � ), and the stochasticity in dispersal
( � � 	 � � � � ��� � ). For Poisson process error the CV scales as

� � M�� � , so all else being
equal we expect low seed density to be more variable. We plot this expectation in
Figure 11 and find, as we would expect, that all sample points are above this line,
though at low seed rain some species definitely approach this limit. The variability
above this line can be attributed to other factors such as variability in fecundity.
Table 2 lists the mean and standard deviation of both mean dispersal and CV of
dispersal, as well as the relative abundance of each species and the expected CV at
the mean abundance attributable to the Poisson dispersal stochasticity.
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Figure 12:

Spp ������
 ��� � � ������
����  	�
 � � �  	 ���  	 !� � � RelAbund
ACru 101.76 57.64 1.74 1.08 0.09 0.23
CAca 1.30 4.63 9.01 5.25 0.87 0.01
CEca 1.01 1.42 2.82 2.00 0.99 0.03

FRam 38.24 88.37 10.02 4.82 0.16 0.06
LIst 120.63 115.81 3.76 1.46 0.09 0.11
Litu 69.46 45.34 0.67 0.22 0.12 0.03

NYsy 0.33 1.26 14.90 5.39 1.73 0.03
PIta 91.45 70.88 1.55 0.74 0.10 0.04

ULsp 16.67 16.87 1.81 0.71 0.24 0.08

Table 2: Summary statistics for sampled dispersal maps by species.  	 !� � � is
the expected CV due to the Poisson dispersal stochasticity alone at the mean seed
rain. In all cases  	 !� � � is substantially below the observed CV.

� � � 	 � � � 
 is the
relative abundance of each species on the landscape based on stem density but not
taking into account tree size.

� �
� 	 � � � 
 does not sum to one because there are 43
other species in the forest which are not presented here.
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Figure 13: Spatial map of the mean number of seeds dispersed per sq. m for
different species 16
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Figure 14: Spatial map of the coefficient of variation in the number of seeds dis-
persed for different species 17



Three of the species clearly appear to be dispersal limited (CAca, CEca, and
NYsy) while the other six species appear to be reasonably abundant at most, though
not necessarily all, places on the landscape (Figure 11). The seed limited species
all appear to be relatively less abundant (column RelAbund in Table 2) and have
short dispersal distances (column � in Table 1), but they also span a spectrum of
temporal variability due largely to their different levels of variability in fecundity.
Of the remaining species with relatively high mean seed rain, they also span a
range of variability from LItu, which is widely dispersed, highly fecund, and has
trees that are well distributed across the landscape, to FRam, which has high levels
of variability in fecundity and a short dispersal distance, leading to high spatial
and temporal variability in seed rain. In between are species like ACru and PIta,
which have similar mean seed rain and CV, but reach this in very different ways.
PIta has a very long dispersal distance but is highly aggregated to one part of the
landscape, leading to very smooth dispersal contours. ACru on the other hand has
a much smaller dispersal distance, but is very abundant and distributed across the
landscape, which leads to a much more complicated pattern of both mean dispersal
and CV (Figures 13, 14).

In setting the level of ”acceptable” error it is important to understand the ecol-
ogy underlying the dispersal process. For example, the lowest values for the CV
we observed in our sampling were for LItu, which were around 40%. However,
these low values also occur at high seed rains. At high seed density, density depen-
dent mortality exerts a negative feedback, reducing the number of seeds available
for recruitment and thus reducing the model’s sensitive to variation at high seed
densities. In the face of such high levels of inherent stochasticity in the process,
it is tempting to ask why do we need to worry about calculating dispersal at all?
Couldn’t we do just as well just drawing numbers randomly? Here it is important
to remember what types of inherent variability we consider important to capture.
We do care about the overall spatial pattern of dispersal and it is important that we
generate the correct pattern of spatial aggregation for seed rain. It is also important
that we capture the temporal and spatial coherence within the temporal variability.
In other words, we need to capture the bust-and-boom masting cycles exhibited
by some species. The recruitment response by each species is nonlinear so actual
recruitment can be very different than average seed rain times average survival.
Where we have the greatest room to accomodate approximation error is in com-
parison to the dispersal stochasticity, in particular at low seed densities, and to the
fecundity stochasticity at high seed rain that is being buffered out. Further, high
seed rain most often occurs in close proximity to adult trees, which will often be
calculated exactly by the monopole anyways.
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6 Determining the appropriate monopole factor

We performed a set of experiments that illustrate the variation of RMS error of
seeds dispersed with respect to the following factors – monopole factor, number of
trees in the forest, spatial distribution of trees and species parameters. Using the
data from these experiments, we can choose the appropriate monopole factor for a
given simulation year, such that the RMS error incurred at that year is quantitatively
similar to the inherent variability of the dispersal process.

The first experiemnt describe the variation of RMS error and running time of
dispersal model with respect to monopole factor. The experiment was performed
on the 9 species used in the previous section. We initialized the forest with tree data
from a real forest. The side length of the forest is 512 meters and we varied the
monopole thresholds from 0.1 to 1.0 As anticipated, the run time decreases with
the increase in the monopole threshold and the RMS error increases with increase
inthe monopole factor Figure 15 shows the running time and RMS error of seeds
dispersed for the 9 different species as the monopole threshold is varied. Figure 16
shows the spatial distribution of relative error with monopole factor 0.5 for all the
9 species.

For a given monopole factor � and species 	 , we quantify the tradeoff between
RMS error and running time by calculating the “tradeoff index”( � � � � � ), which is
defined as follows:

� � � � �	� � ��� � � ��� � � � � � � �
� � �$� � (3)

where � � � � � is the RMS error and � � � � � is the running time of dispersal algo-
rithm for monopole fator � and � is a constant.

We also calculate the cumulative index by summing the index of all the 9
species. Figure 17 shows the variation of the cumulative index with monopole
factor � . It also shows the tradeoff index for species Acer rubium and caca.

The next experiemnt describe the variation of RMS error with respect to monopole
factor and number of trees. The experiment was performed on Acer rubium species.
We initialized the forest with synthetic tree data. The side length of the forest was
fixed as 512 meters. We varied the monopole thresholds from 0.1 to 1.0 and the
number of trees from 100 to 1000. Figure 18 shows the RMS error as a triangulated
surface. As anticipated, the RMS error increases with the increase in the monopole
factor and decreases with increase in the number of trees.

The next experiemnt describe the variation of RMS error and running time
with respect to the percentage of forest area that contains trees(occupancy). The
occupancy was varied from ��� to ����� � . The experiment was performed on Acer
rubium species. The side length of the forest was fixed as 512 meters. For a
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Figure 15: Tradeoff between running time and error for nine different species.
The right figure shows the running time and the left figures show the RMS error
incurred as the monopole factor is varied from from 0 to 1
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Figure 16: Spatial distribution of relative error for 9 species. Monopole factor is
set to 0.5.
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Figure 17: Plot of � for various monopole factors. Figure shows the cumulative
index and the index for species Acer rubium and caca.
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Figure 18: RMS error variation plotted as a surface. Monopole factor is varied
from from 0 to 1 and number of trees is varied from 100 to 1000.
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Figure 19: Variation of RMS error and running time for different occupancy values.
The left figure plots the RMS error and the right figure plots the running time.

given occupancy, we obtain the initial tree distribution as follows: randomly select��� � ��� regions of appropriate number in the forest and fill each ��� � ��� region with
constant(in this experiment 20 trees) number of trees placed randoml inside the re-
gion. Figure 19 plots the RMS error as the occupancy is varied. As anticipated, the
RMS error decreases and running time increases with increase in occupancy. Two
factors contribute towards this behaviour: (i) the number of trees in the forest in-
creases as occupancy increases; (ii) the distribution of trees becomes more uniform
as occpancy increases.
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A Appendix: Notation Index

Landscape

Mesh bounding the landscape 

Grid cells 
 ���
Center of grid cell 
 ���  ���
Resolution of each gridcell �

Spatial Attributes of Individual

Position of tree � � � � �
DBH of tree � � � � �
Trunk height of tree � � � ���
Crown height of tree � � � � � �
Crown diameter of tree � � � � � �
Fecundity of tree � � � � �

Dispersal

Expected number of seeds dispersed in gridcell  ��� �� ���
Number of seeds dispersed in gridcell  ��� � ���
Indicator variable for sex of tree � 
 � � �
Indicator variable for reproductivity of tree � � � � �
Dispersal Kernel - Student t-distribution with parameters � ���  ������� � ���
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